ASSESSMENT and
OUALIFICATIONS
ALLIANCE

General Certificate of Education

Mathematics 6360

MM2B Mechanics $2 B$

Mark Scheme 2005 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key to mark scheme and abbreviations used in marking

M	mark is for method	
m or dM	mark is dependent on one or more M marks and is for method	
A	mark is dependent on M or m marks and is for accuracy	
B	mark is independent of M or m marks and is for method and accuracy	
E	mark is for explanation	
Vor ft or F	follow through from previous	
	incorrect result	MC

Application of Mark Scheme

No method shown:

Correct answer without working
Incorrect answer without working

More than one method / choice of solution:

2 or more complete attempts, neither/none crossed out

1 complete and 1 partial attempt, neither crossed out

Crossed out work

Alternative solution using a correct or partially correct method
mark as in scheme
zero marks unless specified otherwise
mark both/all fully and award the mean mark rounded down
award credit for the complete solution only
do not mark unless it has not been replaced
award method and accuracy marks as appropriate

MM2B

Q	Solution	Marks	Total	Comments
1(a)	$12.5=\lambda \times \frac{0.1}{0.4}$	M1A1		M1: Substitution A1: All correct
	$\lambda=50$	A1	3	
(b)	$\mathrm{EPE}=\frac{50 \times(0.1)^{2}}{2 \times 0.4}$	M1		M1 subs.
	$=0.625 \mathrm{~J}$	A1		PI A1 all correct
	$0.625=\frac{1}{2} \times 0.2 \times v^{2}$	M1		M1 use of principle ft EPE
	$\mathrm{v}=2.5 \mathrm{~ms}^{-1}$	A1F	5	ft EPE
	Total		8	
2(a)		B1	1	All forces shown and in correct direction (no extras)
(b)	$\begin{array}{ll} R=125 g & (=1225) \\ F=0.3 \times R & \\ F=367.5 \mathrm{~N} \end{array}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1F } \end{gathered}$	3	Condone inequality ft slip, both vertical forces present (g missing B0 M1 A1F)
(c)	$\begin{aligned} & \text { M (ground) } \\ & 35 g \times 1.5 \cos 60^{\circ}+90 g \times x \times \cos 60^{\circ} \\ & =N \times 3 \cos 30^{\circ} \end{aligned}$	M1A2		M1 attempt at moments eqn. Accept one force missing. -1 each term missing or incorrect. Condone repeated error, g missing or \sin / \cos mix.
	$F=N$	B1		
	Substitute to find x	m1		Subs. of candidate's N
	$x=1.582$ metres	A1	6	Accept 1.6
	Total		10	

MM2B (cont)

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Marks \& Total \& Comments \\
\hline 3(a)(i) \& \[
\begin{align*}
\& \frac{1}{2} \times 28 \times 1^{2}+28 \times 9.8 \times 2.5=\frac{1}{2} \times 28 \times v^{2} \\
\& v=7.07 \mathrm{~ms}^{-1} \quad(3 \mathrm{sf}) \quad(3 \mathrm{sf}) \tag{3sf}
\end{align*}
\]

\[
\begin{aligned}
\& \text { Initial energy }=\mathrm{PE}+\mathrm{KE} \\
\& \frac{1}{2} \times 28 \times 1+28 \times 9.8 \times 2.5 \\
\& 700-\frac{1}{2} \times 28 \times v^{2}=350 \\
\& v=5 \mathrm{~ms}^{-1}
\end{aligned}
\] \& \begin{tabular}{l}
M1A2 \\
A1 \\
B1 \\
B1 \\
B1 \\
M1 \\
M1A1 \\
A1F
\end{tabular} \& \[
3
\] \& \begin{tabular}{l}
M1 all 3 terms \\
- 1 each term incorrect \\
Convincingly obtained \\
v increasing accept straight line, not horizontal labels all correct (\(1,7.07, T\)) \\
correct shape \\
M1 work/energy principle \\
A1 correct \\
ft slip eg sign
\end{tabular} \\
\hline \& Total \& \& 11 \& \\
\hline 4(a)
(b) \& \[
\begin{aligned}
\& M(A B) 4 M g \times \frac{3 d}{2}+M g \times 2 d=5 M g \times \bar{y} \\
\& \bar{y}=1.6 d
\end{aligned}
\]
\[
\begin{aligned}
\& \tan \theta=\frac{G M}{C M} \\
\& =\frac{2.4 d}{3 d} \\
\& \theta=38.7^{\circ}
\end{aligned}
\] \& \begin{tabular}{l}
M1A2 \\
A1 \\
M1 \\
A1A1 \\
A1F
\end{tabular} \& 4

4 \& | M1A0 if areas used |
| :--- |
| M1 3 terms, condone ratio methods for weights |
| - 1 each term wrong |
| Full method for an acute angle involving wallet |
| A1A0 for inversion |
| ft slip in subtraction |

\hline \& Total \& \& 8 \&

\hline
\end{tabular}

MM2B (cont)

Q	Solution	Marks	Total	Comments
5	$\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{k}{v} \\ & \int v \mathrm{~d} v=\int k \mathrm{~d} t \\ & \frac{v^{2}}{2}=k t(+c) \\ & t=0, v=u, \therefore c=\frac{u^{2}}{2} \\ & v^{2}=u^{2}+2 k t \end{aligned}$	B1 M1 m1 A1 m1 A1	6	Separation of variables involving t Integrate
	Total		6	
6(a)(i)(ii)	$\begin{aligned} & \text { Acceleration }=\frac{v^{2}}{r}=\frac{(7.5)^{2}}{15} \\ & =3.75 \mathrm{~ms}^{-2} \end{aligned}$	M1	2	Attempt at $\frac{v^{2}}{r}$
		A1		
	$\begin{aligned} & 2940=400 \times \frac{r}{15} \\ & V=10.5 \mathrm{~ms}^{-1} \end{aligned}$	M1A1		M1 use, A1 subs correct
		A1	3	
(b)	Motorcycle and rider modelled as a particle Size of rider/cycle compared with radius / 15 m	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	
(c)	Acceleration or force $\left(\frac{v^{2}}{r}\right)$ must decrease so r must increase	M1		Force decrease \rightarrow radius increase B1 sc
		A1	2	For 2 marks, algebraic reference or convincing explanation
	Total		9	
7(a)(i)	$\mathbf{v}=2 \cos 2 \mathbf{t i}+6 \mathbf{j}$	M1A1	2	M1 differentiation ($6 t$)
	$\|\mathbf{v}\|=\sqrt{4 \cos ^{2} 2 t+36}$	$\begin{gathered} \text { M1 } \\ \text { A1F } \\ \text { A1 } \end{gathered}$	3	Sum of squares, for v or v^{2} ft trig term for \mathbf{v} CAO
(iii)	$\cos ^{2} 2 t=0 \text { or } \cos 2 \mathrm{t}=0$	M1	2	
	$t=\frac{\pi}{4}$	A1		radians
(b)(i)	$\mathbf{a}=-4 \sin 2 t \mathbf{i}$	M1	Differentiation attempt	
	$\mathbf{F}=0.25 \mathbf{a}$	M1	3	Used
(ii)	$\mathbf{F}=-\sin 2 t \mathbf{i}$	A1F		$\mathrm{ft} \mathbf{v}$, see vector
	Direction is $\pm \mathbf{i}$$\|\sin 2 t\| \leq 1$	B1	2	
		B1		
	Total		12	

MM2B (cont)

Q	Solution	Marks	Total	Comments
8(a)	$\frac{1}{2} m U^{2}=m g a$	M1A1		Conservation of energy M1
	$U=\sqrt{2 g a}$	A1F	3	$\mathrm{ft} \mathrm{slip}(\mathrm{eg} h=2 a)$
(b)				
	$R=0: m g \cos \theta=\frac{m v^{2}}{a}$	M1A1		M1 for $F=m a$ in general position
	$v^{2}=a g \times \frac{h}{a}$	m1		Subs for $\cos \theta$
	$v^{2}=h g$	A1F		ft errors in height
	$\frac{1}{2} m\left(\frac{5 a g}{2}\right)=\frac{1}{2} m v^{2}+m g h$	M1A1		M1 conservation of energy using u, v and h
	$\frac{5 a g}{2}=3 g h$	m1		
	$h=\frac{5 a}{6}$	A1	8	
	Total		11	
	Total		75	

